Abstract:
We give a sampling-based algorithm for the k-Median problem, with running time O(k(k 2 log k) 2 log (k log k)), where k is the desired number of clusters and is a confidence parameter. This is the first k-Median algorithm with fully polynomial running time that is independent of n, the size of the data set. It gives a solution that is, with high probability, an O(1)-approximation, if each cluster in some optimal solution has (n k) points. We also give weakly-polynomial-time algorithms for this problem and a relaxed version of k-Median in which a small fraction of outliers can be excluded. We give near-matching lower bounds showing that this assumption about cluster size is necessary. We also present a related algorithm for finding a clustering that excludes a small number of outliers.