DSpace Repository

Almost global solutions of capillary gravity water waves equations on the circle

Show simple item record

dc.contributor.author Berti, Massimiliano
dc.contributor.author Delort, Jean-Marc
dc.date.accessioned 2019-05-24T15:44:26Z
dc.date.available 2019-05-24T15:44:26Z
dc.date.issued 2018
dc.identifier.isbn 978-3-319-99485-7
dc.identifier.uri http://hdl.handle.net/123456789/12540
dc.description.abstract The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capillarity parameters are taken outside an exceptional subset of zero measure. In contrast to the many results known for these equations on the real line, with decaying Cauchy data, one cannot make use of dispersive properties of the linear flow. Instead, a normal forms-based procedure is used, eliminating those contributions to the Sobolev energy that are of lower degree of homogeneity in the solution. Since the water waves equations form a quasi-linear system, the usual normal forms approaches would face the well-known problem of losses of derivatives in the unbounded transformations. To overcome this, after a paralinearization of the capillary-gravity water waves equations, we perform several paradifferential reductions to obtain a diagonal system with constant coefficient symbols, up to smoothing remainders. Then we start with a normal form procedure where the small divisors are compensated by the previous paradifferential regularization. The reversible structure of the water waves equations, and the fact that we seek solutions even in space, guarantees a key cancellation which prevents the growth of the Sobolev norms of the solutions. es
dc.language.iso en es
dc.publisher Springer Nature es
dc.relation.ispartofseries Lecture notes of the Unione Matematica Italiana;24
dc.rights Este documento es reproducido por la biblioteca universitaria de la UCLV bajo el amparo de la legislación cubana vigente sobre derecho de autor. Los usuarios podrán utilizar este material bajo la siguiente licencia: Reconociendo a los autores de la obra mediante las citas y referencias bibliográficas correspondientes, utilizar solo para fines No Comerciales y No realizar reproducciones u obras derivadas. es
dc.subject Ecuaciones Diferenciales Parciales es
dc.subject Análisis de Fourier es
dc.subject Sistemas Dinámicos Diferenciables es
dc.subject Análisis Funcional es
dc.subject Sistemas Dinámicos y Teoría Ergódica es
dc.subject Análisis Funcional es
dc.subject Differential Equations Partial es
dc.subject Fourier Analysis es
dc.subject Differentiable Dynamical Systems es
dc.subject Functional Analysis es
dc.subject Dynamical Systems and Ergodic Theory es
dc.subject Functional Analysis es
dc.title Almost global solutions of capillary gravity water waves equations on the circle es
dc.type Book es


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account