DSpace Repository

Machine learning with pyspark. With natural language processing and recommender systems

Show simple item record

dc.contributor.author Singh, Pramod
dc.date.accessioned 2019-03-28T14:56:46Z
dc.date.available 2019-03-28T14:56:46Z
dc.date.issued 2019
dc.identifier.isbn 978-1-4842-4131-8
dc.identifier.uri http://hdl.handle.net/123456789/11482
dc.description.abstract Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. After reading this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications. You will: Build a spectrum of supervised and unsupervised machine learning algorithms Implement machine learning algorithms with Spark MLlib libraries Develop a recommender system with Spark MLlib libraries Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model. es
dc.language.iso en es
dc.publisher Apress es
dc.rights Este documento es reproducido por la biblioteca universitaria de la UCLV bajo el amparo de la legislación cubana vigente sobre derecho de autor. Los usuarios podrán utilizar este material bajo la siguiente licencia: Reconociendo a los autores de la obra mediante las citas y referencias bibliográficas correspondientes, utilizar solo para fines No Comerciales y No realizar reproducciones u obras derivadas. es
dc.subject Inteligencia Artificial es
dc.subject Software de la Aplicacion es
dc.subject Desarrollo es
dc.subject Python es
dc.subject Lenguaje de Programación de Computadoras es
dc.subject Spark es
dc.subject Lenguaje de Programación de Computadoras es
dc.subject Computadoras es
dc.subject Bases de Datos es
dc.subject Minería de Datos es
dc.subject Artificial Intelligence es
dc.subject Application Software es
dc.subject Development es
dc.subject Python es
dc.subject Computer Program Language es
dc.subject Spark es
dc.subject Computer Program Language es
dc.subject Computers es
dc.subject Databases es
dc.subject Data Mining es
dc.title Machine learning with pyspark. With natural language processing and recommender systems es
dc.type Book es


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account